EMAIL TO A FRIEND COMMENT

 

Sports-Related Injuries Substantially Impact Health of Student-Athletes


The National Collegiate Athletic Association (NCAA) monitors injuries among college student-athletes at member schools. In academic year 2013–2014, a total of 1,113 member schools fielded 19,334 teams with 478,869 participating student-athletes in NCAA championship sports. External researchers and the CDC used information reported to the NCAA Injury Surveillance Program (NCAA-ISP) by a sample of championship sports programs to summarize the estimated national cumulative and annual average numbers of injuries during the five academic years from 2009–2010 through 2013–2014.

 

Analyses were restricted to injuries reported among student-athletes in 25 NCAA championship sports. During this period, 1,053,370 injuries were estimated to have occurred during an estimated 176.7 million athlete-exposures to potential injury (i.e., one athlete's participation in one competition or one practice). Injury incidence varied widely by sport. Among all sports, men's football accounted for the largest average annual estimated number of injuries (47,199) and the highest competition injury rate (39.9 per 1,000 athlete-exposures). Men's wrestling experienced the highest overall injury rate (13.1 per 1,000) and practice injury rate (10.2 per 1,000).

 

Among women's sports, gymnastics had the highest overall injury rate (10.4 per 1,000) and practice injury rate (10.0 per 1,000), although soccer had the highest competition injury rate (17.2 per 1,000). More injuries were estimated to have occurred from practice than from competition for all sports, with the exception of men's ice hockey and baseball. However, injuries incurred during competition were somewhat more severe (e.g., requiring ≥7 days to return to full participation) than those acquired during practice.

 

Multiple strategies are employed by NCAA and others to reduce the number of injuries in organized sports. Injury prevention strategies that target practices as well as competitions might provide additional opportunities for reduction in injury incidence. Injury surveillance data can be used to compare injury incidence across sports, develop and evaluate rule and policy changes, and focus injury prevention research and programs. Continual analysis of surveillance data will help to understand changes in the incidence and severity of college sports injuries.

 

During the five academic years from 2009–2010 through 2013–2014, injuries and athlete-exposures were voluntarily reported to NCAA-ISP by participating team athletic trainers, using a web-based platform. Overall, participation among teams for the study period ranged from a low of 0.7% in men's tennis to a high of 13.2% in men's ice hockey. Data were aggregated across all schools and across all available years for 12 men's championship sports and 13 women's championship sports.

 

Variables examined included the sport, whether the injury occurred during practice or competition, and whether the player required emergency transport, surgery, or ≥7 days before return to full participation. Injuries were defined as those that occurred in an organized NCAA-approved practice or competition and required medical attention by a physician or athletic trainer. An athlete-exposure was defined as one student-athlete's participation in one practice or one competition. Injury rates were calculated by dividing the number of injuries by the number of athlete-exposures. Competition-to-practice injury rate ratios were calculated by dividing the competition injury rate by the practice injury rate.

 

To create national estimates, each injury and exposure was assigned a sample weight on the basis of the inverse of the school selection probability, using stratifications based on sport, division, and academic year. For example, over the five-year study period, among the 123 team seasons of men's football from which data were acquired, 8,680 injuries from 899,321 athlete-exposures were reported by participating team athletic trainers. These data, when weighted and adjusted, produced national estimates of 235,993 injuries and 25,770,273 athlete-exposures (or estimated annual averages of 47,199 injuries and 5,154,055 athlete-exposures).

 

Among all injuries, those incurred during competition were somewhat more severe than those acquired during practice; overall, 4.0% of injuries required surgery (competition: 5.4%; practice: 3.1%), and 0.9% required emergency transport (competition: 1.4%; practice: 0.6%). These data equated to estimated annual averages of 46,231 injuries that required ≥7 days before the athlete could return to full participation; 8,367 that required surgery; and 1,904 that required emergency transport.

 

Approximately half of all injuries were diagnosed as sprains or strains (competition: 45.9%; practice: 45.0%). Sprains (including anterior cruciate ligament tears) and strains also accounted for the largest proportions of injuries in competition and practice requiring ≥7 days before return to full participation, (52.1% and 47.8%, respectively) and the largest proportion of injuries requiring surgery (57.7% and 52.9%, respectively). In addition, sprains and strains accounted for the largest proportion of practice-related injuries requiring emergency transport (29.4%); however, during competition, the largest proportions of injuries requiring emergency transport were fractures, stress fractures, dislocations, and subluxations (25.8%), and concussions (22.0%).

 

Among men's sports, football accounted for the largest percentage of athlete-exposures (14.6% of all athlete-exposures and 31.2% of all male athlete-exposures), and football teams were estimated to have the highest number of injuries per year (47,199; 22.4% of all injuries and 36.3% of all male injuries). Football also had the highest competition injury rate (39.9 injuries per 1,000 athlete-exposures) and competition-to-practice rate ratio (6.8) and the third highest overall injury rate (9.2 per 1,000). Overall, football accounted for the largest proportions of injuries requiring ≥7 days before return to full participation (26.2%), surgery (40.2%), and emergency transport (31.9%). Men's wrestling had the highest overall injury rate (13.1 per 1,000 athlete-exposures) and the highest practice injury rate (10.2 per 1,000). Swimming and diving had the lowest overall injury rate (1.7 per 1,000). The rates of injury during competition were higher than during practice for all men's sports. However, more injuries occurred in practices than in competitions for all men's sports except ice hockey and baseball.

 

Among women's sports, soccer accounted for the highest estimated number of injuries per year (15,113), and the highest competition injury rate (17.2 per 1,000); the competition-to-practice rate ratio was 3.1. Gymnastics had the highest overall injury rate (10.4 per 1,000 athlete-exposures) and practice injury rate (10.0 per 1,000). The lowest overall estimated injury rate (1.8 per 1000) was for swimming and diving. Injury rates were significantly higher during competitions than practices for all women's sports except volleyball, indoor track, and swimming and diving.

 

Among men and women, overall injury rates were similar for soccer, swimming and diving, tennis, and both indoor and outdoor track and field. However, overall injury rates were significantly higher among men than women in basketball, ice hockey, and lacrosse. Overall injury rates were significantly higher among women than men in cross country.

 

Since men's football accounts for the most college sport injuries each year, prevention efforts that focus on football will target the largest number of severe injuries. The large overall number of football-related injuries is attributable to football having the largest number of student-athletes (71,291 during the 2013–14 academic year) among all 25 reported NCAA sports (16.1%) (2). Although wrestling had the highest overall injury rate among all 25 reported NCAA sports, the number of student-athlete wrestlers was much smaller (6,982). Among women's sports, gymnastics had the highest rate of injury each year, whereas soccer contributed the largest number of injuries.

 

Much of this data is consistent with earlier reports and can be used to guide resource allocation decisions and research to identify specific risk factors or to evaluate prevention measures. The relationship between injury numbers and rates in practice and competition is similar to previous findings. Competition injury rates were higher than practice injury rates, and more than five-fold higher for men's football and ice hockey. This difference might be attributable to a higher intensity of activity during competitions compared with practices; in most sports, the proportion of injuries requiring ≥7 days before return to full participation was higher in competitions than in practices. Major injuries, such as concussion or those resulting in surgery or emergency transport, occurred commonly in both competition and practice. Injury prevention strategies that target not only competition, but also the more controlled practice environment, might provide additional opportunities to reduce injury incidence.

 

Sports injury data, such as those collected by NCAA-ISP, have been used to describe the incidence of injury, develop and evaluate various rule and policy changes (e.g., changing football kickoff and touchback yard lines to reduce injuries), guide resource allocation, and focus injury prevention efforts. NCAA-ISP data are now available online to researchers to aid in their analyses of sports injuries and in their development of strategies for injury prevention.

 

See the CDC Report

 

See also Medical Law Perspectives, May 2012 Report: Repeat Brain Trauma That Is More Than a Bump on the Head: Multiple Concussion Injury and Second Impact Syndrome 

 

 

REPRINTS & PERMISSIONS COMMENT